JØRGENSEN’S INEQUALITY FOR QUATERNIONIC HYPERBOLIC SPACE WITH ELLIPTIC ELEMENTS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jørgensen’s inequality for quternionic hyperbolic space with elliptic elements

In this paper, we give an analogue of Jørgensen’s inequality for non-elementary groups of isometries of quaternionic hyperbolic space generated by two elements, one of which is elliptic. As an application, we obtain an analogue of Jørgensen’s inequality in 2-dimensional Möbius group of the above case. 2000 Mathematics subject classification: primary 30F40; secondary 20H10, 57S30.

متن کامل

Jørgensen’s inequality for quaternionic hyperbolic n-space

Jørgensen’s inequality gives a necessary condition for a non-elementary two generator group of isometries of real hyperbolic 2-space to be discrete. We give analogues of Jørgensen’s inequality for non-elementary groups of isometries of quaternionic hyperbolic n-space generated by two elements, one of which is loxodromic. Mathematics Subject Classifications (2000): 20H10, 22E40, 57S30.

متن کامل

Jørgensen’s Inequality and Collars in n-dimensional Quaternionic Hyperbolic Space

In this paper, we obtain analogues of Jørgensen’s inequality for non-elementary groups of isometries of quaternionic hyperbolic n-space generated by two elements, one of which is loxodromic. Our result gives some improvement over earlier results of Kim [10] and Markham [15]. These results also apply to complex hyperbolic space and give improvements on results of Jiang, Kamiya and Parker [7]. As...

متن کامل

Shimizu’s lemma for quaternionic hyperbolic space

We prove a version of Shimizu’s lemma for quaternionic hyperbolic space. Namely, consider groups of quaternionic hyperbolic isometries containing a parabolic map fixing infinity. We show that any element of such a group not fixing infinity has an isometric sphere whose radius is bounded by a function of the parabolic translation length at its centre. Mathematics Subject Classifications (2000): ...

متن کامل

A Deformation of Quaternionic Hyperbolic Space

We construct a continuous family of new homogeneous Einstein spaces with negative Ricci curvature, obtained by deforming from the quaternionic hyperbolic space of real dimension 12. We give an explicit description of this family, which is made up of Einstein solvmanifolds which share the same algebraic structure (eigenvalue type) as the rank one symmetric space HH. This deformation includes a c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 2009

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972709000720